Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Am J Hematol ; 97(11): 1404-1412, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1976682

ABSTRACT

Coronavirus Disease (COVID-19) can be considered as a human pathological model of inflammation combined with hypoxia. In this setting, both erythropoiesis and iron metabolism appear to be profoundly affected by inflammatory and hypoxic stimuli, which act in the opposite direction on hepcidin regulation. The impact of low blood oxygen levels on erythropoiesis and iron metabolism in the context of human hypoxic disease (e.g., pneumonia) has not been fully elucidated. This multicentric observational study was aimed at investigating the prevalence of anemia, the alterations of iron homeostasis, and the relationship between inflammation, hypoxia, and erythropoietic parameters in a cohort of 481 COVID-19 patients admitted both to medical wards and intensive care units (ICU). Data were collected on admission and after 7 days of hospitalization. On admission, nearly half of the patients were anemic, displaying mild-to-moderate anemia. We found that hepcidin levels were increased during the whole period of observation. The patients with a higher burden of disease (i.e., those who needed intensive care treatment or had a more severe degree of hypoxia) showed lower hepcidin levels, despite having a more marked inflammatory pattern. Erythropoietin (EPO) levels were also lower in the ICU group on admission. After 7 days, EPO levels rose in the ICU group while they remained stable in the non-ICU group, reflecting that the initial hypoxic stimulus was stronger in the first group. These findings strengthen the hypothesis that, at least in the early phases, hypoxia-driven stimuli prevail over inflammation in the regulation of hepcidin and, finally, of erythropoiesis.


Subject(s)
Anemia , COVID-19 , Erythropoietin , Erythropoiesis/physiology , Hepcidins , Humans , Hypoxia , Inflammation , Iron
2.
Commun Med (Lond) ; 1(1): 32, 2021.
Article in English | MEDLINE | ID: covidwho-1768865

ABSTRACT

BACKGROUND: Persistence of antibodies to SARS-CoV-2 viral infection may depend on several factors and may be related to the severity of disease or to the different symptoms. METHODS: We evaluated the antibody response to SARS-CoV-2 in personnel from 9 healthcare facilities and an international medical school and its association with individuals' characteristics and COVID-19 symptoms in an observational cohort study. We enrolled 4735 subjects (corresponding to 80% of all personnel) for three time points over a period of 8-10 months. For each participant, we determined the rate of antibody increase or decrease over time in relation to 93 features analyzed in univariate and multivariate analyses through a machine learning approach. RESULTS: Here we show in individuals positive for IgG (≥12 AU/mL) at the beginning of the study an increase [p = 0.0002] in antibody response in paucisymptomatic or symptomatic subjects, particularly with loss of taste or smell (anosmia/dysgeusia: OR 2.75, 95% CI 1.753 - 4.301), in a multivariate logistic regression analysis in the first three months. The antibody response persists for at least 8-10 months. CONCLUSIONS: SARS-CoV-2 infection induces a long lasting antibody response that increases in the first months, particularly in individuals with anosmia/dysgeusia. This may be linked to the lingering of SARS-CoV-2 in the olfactory bulb.

3.
Sci Rep ; 11(1): 12312, 2021 06 10.
Article in English | MEDLINE | ID: covidwho-1265974

ABSTRACT

Lombardy is the Italian region most affected by COVID-19. We tested the presence of plasma anti-SARS-CoV-2 IgG antibodies in 3985 employees across 7 healthcare facilities in areas of Lombardy with different exposure to the SARS-CoV-2 epidemic. Subjects filled a questionnaire to self-report on COVID-19 symptoms, comorbidities, smoking, regular or remote working, and the exposure to COVID-infected individuals. We show that the number of individuals exposed to the virus depended on the geographical location of the facility, ranging between 3 and 43%, consistent with the spatial variation of COVID-19 incidence in Lombardy, and correlated with family interactions. We observed a higher prevalence of females than males positive for IgG, however the level of antibodies was similar, suggesting a comparable magnitude of the anti-spike antibody response. IgG positivity among smokers was lower (7.4% vs 13.5%) although without difference in IgG plasma levels. We observed 11.9% of IgG positive asymptomatic individuals and another 23.1% with one or two symptoms. Interestingly, among the IgG positive population, 81.2% of subjects with anosmia/dysgeusia and fever were SARS-CoV-2 infected, indicating that these symptoms are strongly associated to COVID-19. In conclusion, the frequency of IgG positivity and SARS-CoV-2 infection is dependent on the geographical exposure to the virus and primarily to family rather than hospital exposure.


Subject(s)
Antibodies, Viral/blood , COVID-19/blood , Immunoglobulin G/blood , SARS-CoV-2/isolation & purification , Adaptive Immunity , Adult , Aged , Antibodies, Viral/immunology , COVID-19/epidemiology , COVID-19/immunology , COVID-19 Serological Testing , Female , Humans , Immunoglobulin G/immunology , Incidence , Italy/epidemiology , Male , Middle Aged , Risk Factors , SARS-CoV-2/immunology
4.
Biomarkers ; 25(8): 634-640, 2020 Dec.
Article in English | MEDLINE | ID: covidwho-969132

ABSTRACT

BACKGROUND: Severe pneumonia is pathological manifestation of Coronavirus Disease 2019 (COVID-19), however complications have been reported in COVID-19 patients with a worst prognosis. Aim of this study was to evaluate the role of high sensitivity cardiac troponin I (hs-TnI) in patients with SARS-CoV-2 infection. METHODS: we retrospectively analysed hs-TnI values measured in 523 patients (median age 64 years, 68% men) admitted to a university hospital in Milan, Italy, and diagnosed COVID-19. RESULTS: A significant difference in hs-TnI concentrations was found between deceased patients (98 patients) vs discharged (425 patients) [36.05 ng/L IQR 16.5-94.9 vs 6.3 ng/L IQR 2.6-13.9, p < 0.001 respectively]. Hs-TnI measurements were independent predictors of mortality at multivariate analysis adjusted for confounding parameters such as age (HR 1.004 for each 10 point of troponin, 95% CI 1.002-1.006, p < 0.001). The survival rate, after one week, in patients with hs-TnI values under 6 ng/L was 97.94%, between 6 ng/L and the normal value was 90.87%, between the normal value and 40 ng/L was 86.98, and 59.27% over 40 ng/L. CONCLUSION: Increase of hs-TnI associated with elevated mortality in patients with COVID-19. Troponin shows to be a useful biomarker of disease progression and worse prognosis in COVID-19 patients.


Subject(s)
Biomarkers/blood , COVID-19/blood , Hospitalization/statistics & numerical data , Troponin I/blood , Aged , Aged, 80 and over , COVID-19/epidemiology , COVID-19/virology , Female , Heart Failure/blood , Heart Failure/diagnosis , Humans , Male , Middle Aged , Pandemics , ROC Curve , Retrospective Studies , Risk Assessment/methods , Risk Assessment/statistics & numerical data , Risk Factors , SARS-CoV-2/physiology
SELECTION OF CITATIONS
SEARCH DETAIL